

Stikstof terugwinning

Maar waarom dan?...

XXXX-RHD-XX-XX-PP-X-0001 **Confidential** Marco Kerstholt 12 March 2024

Introduction

- Marco Kerstholt
- Senior process Engineer
- 2008 started at (Royal Haskoning)DHV
 - Water for industry
 - 4 years South Africa, 2015 2019
 - Since 2022 member of the R&D team

2 Stikstof terugwinning | 12 March 2024

Search of new technologies for nitrogen recovery

Drivers for nitrogen recovery

Let's dive deeper into this matter

- Why recover nitrogen?
 - Driving force for a circular economy
 - Ammonia production causes a significant CO₂ emission globally
 - Haber-Bosch process is responsible for 99% of ammonia production
 - Ammonia production emits 1.8% of the global CO₂ emission
 - Biological treatment of return liquors are becoming less popular
 - Infection with legionaries (health risk)
 - N₂O emission (significant contribution to global warming)

Why would we want to recover nitrogen?

- 1. Scarcity
- 2. Sustainabillity (SMART: CO₂ footprint)

5 Stikstof terugwinning | 12 March 2024

Why would we want to recover nitrogen? Scarcity

- Nitrogen stored in atmosphere 5.15 * 10⁹ Mton-N/year*
- Yearly production of ammonia 2021 150 million metric tons of ammonia (123 Mton-N/year)

Global nitrogen balance

- Yearly production of ammonia 2021 150 million metric tons of ammonia (123 Mton-N/year)
 - 80%* used for fertilizers
 - Only 17%* ends up in crops, dairy and meat products (63% is lost in agriculture/food production!)
- Yearly excretion by humans 20 Mton-N/d (approx. 16% of the total production)
- Nitrogen released in digestion 3.5 Mton-N/d (approx. 17.5% of nitrogen to WWTP or 3% of total production)
 - 600 mg COD/l, 60 mg-N/l, Yield 0.4, 8%N and 50% ODS reduction
 - Assumed all wastewater is treated globally (which is not the case)
 - Assumed all wastewater treatment plants have a digester (which is not the case)

Bron: Silvio Matassa; Can Direct Conversion of Used Nitrogen to New Feed and Protein Help Feed the World? 2015

* Bron: Ammonia: zero-carbon fertiliser, fuel and energy store 2020, The royal society

7 Stikstof terugwinning | 12 March 2024

Nitrogen production in NL

- Yara Sluiskill produces 1.8 Mton ammonia/year (0.7% of global production)
 - 50% of <u>global</u> nitrogen recovery potential from return liquors
 - Nitrogen recovery potential in NL 170 ton ammonia/year (0.01% of production @ Sluiskill)

Impact of Hydrogen economy on Ammonia production

- Compared to hydrogen, ammonia is:
 - Easier to transport (higher energy density)
 - Lower risk during storage and transport (lower ignition energy)

Impact of Hydrogen economy on Ammonia production

Source: Clean ammonia roadmap 2024, ISPT (institute for sustainable process technology

10 Stikstof terugwinning | 12 March 2024

Haber-Bosch process (current)

Schematic of the Haber Bosch ammonia synthesis reaction.

Haber-Bosch process (future)

Schematic of green ammonia production based upon hydrogen production from water electrolysis and the full decarbonisation of the Haber-Bosch process.

Detailed evaluation – sustainability nitrogen recovery

CO₂ footprint

Direct comparison between ammonium sulphate with nitrogen from Haber-Bosch and nitrogen recovery via stripping*

Haber-Bosch has a significantly lower footprint than recovery from wastewater

Treatment efficiency might improve but so does ammonia production! If green hydrogen would be applied the CO₂ footprint drops by 90%!

* Based on a system selection study for nitrogen removal on return liquors

Why would we want to recover nitrogen? Conclusions

- Nitrogen is not scarce → No necessity for reuse
- Nitrogen recovery doesn't make an impact on the world nitrogen production
 - In the future this impact will be even less with the upcoming hydrogen/(ammonia) economy
- CO₂ footprint of nitrogen recovery higher than of the Haber-Bosch process

Should nitrogen recovery then even be considered at WWTPs?

Change of viewpoint: WWTP

CO₂ footprint

Nitrogen recovery, however, can reduce the CO₂ footprint of the complete value chain of treatment

(Do note your starting points have an impact on the outcome: (in)sufficient COD for DN, N₂O emission factor, availability of excess heat, nitrogen concentration in return liquors, etc.)

System selection nitrogen removal on return liquors

15 Stikstof terugwinning | 12 March 2024

Change of viewpoint: WWTP

Biology vs nitrogen recovery

Nitrogen recovery isn't a goal

It's just another alternative for nitrogen removal