

Manila Bay - Pasig River - Laguna de Bay watershed Introduction to Decision Support System & Model Community Initiative

Arno Nolte

November 1, 2019

- Timeline for the Decision Support System (DSS)
- Introduction to the (available) modeling framework of Manila Bay and Laguna de Bay
- Introduction to the Model Community of Practice (CoP) initiative

Timeline for the Decision Support System

Period		Project/Program
2000-2003	LLDA	Sustainable Development of the Laguna de Bay Environment (SDLBE)
2003-2005	LLDA	Follow-up of the SDLBE
2013	PEMSEA	Total Pollutant Loading Study in the Laguna de Bay-Pasig River-Manila Bay Watershed (<u>link</u>)
2016-2018	MBCO/LLDA	Updating and Application of the Nutrient Reduction Modeling in the Laguna de Bay-Pasig River-Manila Bay Watershed
2017	Manila Water	Laguna East Bay water intake
2018-2020	NEDA	Manila Bay Sustainable Development Master Plan

Deltares

Sustainable Development of the Laguna de Bay Environment (SDLBE) 2000-2003

Decision Support System Manila Bay Area

Deltares

Modeling framework → Spatial Model (MBSM)

3 scenarios for national GDP in million US\$ (constant 2010 US\$)

J.S. Navy, NGA, GEBCO Isat / Copernicus

Population and

land use on barangay level

Google earth

Modeling framework → Waste Load Model (WLM)

BOD pollution load – Reference Scenario

	Sewerage	Sewerage	Sewerage	Septic	Septic			
	primary	secondary	tertiary	tank	tank non-	No		
	treatment	treatment	treatment	desludged	desludged	treatment		
	2015							
Manila Water	14%	0	0%	41%	40%	5%		
Maynilad	16%	0	0%	40%	39%	5%		
Other	0%	0	0	15%	65%	20%		
Reclamation	0%	0	100%	0%	0%	0%		
	2022							
Manila Water	32%	0	0%	31%	32%	5%		
Maynilad	47%	0	0%	24%	24%	5%		
Other	0%	0	0	15%	65%	20%		
Reclamation	0%	0	100%	0%	0%	0%		
	2030							
Manila Water	0%	0	95%	5%	0%	0%		
Maynilad	0%	0	100%	0%	0%	0%		
Other	0%	0	0	15%	65%	20%		
Reclamation	0%	0	100%	0%	0%	0%		
	2040							
Manila Water	0%	0	99%	1%	0%	0%		
Maynilad	0%	0	100%	0%	0%	0%		
Other	0%	0	0	15%	65%	20%		
Reclamation	0%	0	100%	0%	0%	0%		

Preliminary result. Not for distribution.

Deltares

Percentage of population covered by treatment type per time horizon and per treatment area (data derived from Manila Water and Maynilad development plans)

BOD pollution load – Reference Scenario

Model grid → 3D Hydrodynamic & 3D Water Quality models

 Laguna de Bay and Manila Bay connected

Model grid – Pasig connection

Modeling framework → 3D Water Quality model (Delft3D)

MODEL OUTPUT

- 1. Nutrient concentration (N, P, Si)
- 2. Dissolved Oxygen
- 3. Suspended sediment (turbidity)
- 4. Chlorophyll-a
- 5. BOD (Biological Oxygen Demand)
- 6. Pollutants (not included yet)

NB: And many derived variables and statistics.

Water Quality Model Results: Effect of Pollution load reduction on Dissolved Oxygen

Preliminary result. Not for distribution.

100% Waste Load (2015)

Dissolved oxygen concentration near the seabed

Water Quality Model Results: Effect of Pollution load reduction on Dissolved Oxygen

50% Waste Load

Dissolved oxygen concentration near the seabed

Deltares

Water Quality Model Results: Effect of Pollution load reduction on Dissolved Oxygen

MODEL COMMUNITY OF PRACTICE

November 1, 2019

Model Community of Practice

Why a Model Community of Practice?

- 1. Wide range of topics for which expertise is usually not available in one organization
- 2. Wide range of topics requires a lot of input data from monitoring which is usually not available in one organization
- 3. Turnover of trained staff results in drain of expertise
- 4. Multiple models for the same topic may result in confusion and discussion if model results are not the same.
- 5. In general, investments are (too) large to be sustainably born by one organization.

A Model Community of Practice is a way to share expertise, pool knowledge transfer, combine investments, share maintenance, and optimize developments and monitoring efforts.

Model CoP covers more than Modeling

- Model application must be tailored to the Question(s) at hand.
- Model must be based on Understanding how the System works and reacts to measures and/or changes. (Also, model verifies system understanding.)
- System understanding must be based (primarily) on data analysis.
- Model must be fed by and calibrated/validated against suitable Data.
 Deltares

Organizations expressing interest

The modeling teams of the following organizations expressed interest in a Model CoP initiative:

- MBCO
- LLDA
- PRRC
- UP Marine Science Institute
- UP Los Banos
- UP National Engineering Center
- Manila Water
- Deltares
- .

- Get interested organizations together to explore possibilities
- Get institutional support from management
- Draft CoP cooperation agreement
 - Identify and agree on common goal(s)
 - Find balance between commitment and flexibility
 - Voluntarily but not without obligation
 - Set-up supporting structure
 - People, Cooperation protocols, Computer infrastructure
 - Define activities and actions for the next year(s)
 - Arrange continuity

Thank you! Salamat!

November 1, 2019